Research Snappy
  • Market Research Forum
  • Investment Research
  • Consumer Research
  • More
    • Advertising Research
    • Healthcare Research
    • Data Analysis
    • Top Companies
    • Latest News
No Result
View All Result
Research Snappy
No Result
View All Result

Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle

researchsnappy by researchsnappy
November 29, 2019
in Healthcare Research
0
Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle
401
SHARES
2.4k
VIEWS
Share on FacebookShare on Twitter

  • 1.

    McPhaden, M. J. Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).

  • 2.

    Maloney, E. D. & Hartmann, D. L. Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Clim. 13, 1451–1460 (2000).

  • 3.

    Klotzbach, P. J. & Oliver, E. C. Modulation of Atlantic basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J. Clim. 28, 204–217 (2015).

  • 4.

    Joseph, S., Sahai, A. & Goswami, B. Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim. Dyn. 32, 1139–1153 (2009).

  • 5.

    Jia, X., Chen, L., Ren, F. & Li, C. Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci. 28, 521–533 (2011).

  • 6.

    Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H. & Donald, A. Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Clim. 22, 1482–1498 (2009).

  • 7.

    Pohl, B. & Camberlin, P. Influence of the Madden–Julian oscillation on East African rainfall. I: intraseasonal variability and regional dependency. Q. J. R. Meteorol. Soc. 132, 2521–2539 (2006).

  • 8.

    Lorenz, D. J. & Hartmann, D. L. The effect of the MJO on the North American monsoon. J. Clim. 19, 333–343 (2006).

  • 9.

    Grimm, A. M. Madden–Julian Oscillation impacts on South American summer monsoon season: precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Clim. Dyn. 53, 1–26 (2019).

  • 10.

    Carvalho, L. M. V., Jones, C. & Liebmann, B. The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 17, 88–108 (2004).

  • 11.

    Weller, E. et al. Human-caused Indo-Pacific warm pool expansion. Sci. Adv. 2, e1501719 (2016).

  • 12.

    Lazo, J. K., Lawson, M., Larsen, P. H. & Waldman, D. M. US economic sensitivity to weather variability. Bull. Am. Meteorol. Soc. 92, 709–720 (2011).

  • 13.

    Bertrand, J.-L. & Brusset, X. Managing the financial consequences of weather variability. J. Asset Manag. 19, 301–315 (2018).

  • 14.

    Kessler, W. S. EOF representations of the Madden–Julian oscillation and its connection with ENSO. J. Clim. 14, 3055–3061 (2001).

  • 15.

    Zhang, C. Madden–Julian oscillation: bridging weather and climate. Bull. Am. Meteorol. Soc. 94, 1849–1870 (2013).

  • 16.

    Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455, 523–527 (2008).

  • 17.

    Stan, C. et al. Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys. 55, 902–937 (2017).

  • 18.

    Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C. & Lee, S. Observed connection between stratospheric sudden warmings and the Madden–Julian Oscillation. Geophys. Res. Lett. 39, L18807 (2012).

  • 19.

    Madden, R. A. & Julian, P. R. Observations of the 40–50-day tropical oscillation—a review. Mon. Weath. Rev. 122, 814–837 (1994).

  • 20.

    Maloney, E. D., Adames, Á. F. & Bui, H. X. Madden–Julian oscillation changes under anthropogenic warming. Nat. Clim. Change 9, 26–33 (2019).

  • 21.

    Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A. & Wu, J. Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst. 9, 1251–1268 (2017).

  • 22.

    Oliver, E. C. & Thompson, K. R. A reconstruction of Madden–Julian Oscillation variability from 1905 to 2008. J. Clim. 25, 1996–2019 (2012).

  • 23.

    Oliver, E. C. Blind use of reanalysis data: apparent trends in Madden–Julian Oscillation activity driven by observational changes. Int. J. Climatol. 36, 3458–3468 (2016).

  • 24.

    Jones, C. & Carvalho, L. M. V. Changes in the activity of the Madden–Julian Oscillation during 1958–2004. J. Clim. 19, 6353–6370 (2006).

  • 25.

    Pohl, B. & Matthews, A. J. Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Clim. 20, 2659–2674 (2007).

  • 26.

    Slingo, J. M., Rowell, D. P., Sperber, K. R. & Nortley, E. On the predictability of the interannual behaviour of the Madden–Julian Oscillation and its relationship with El Nino. Q. J. R. Meteorol. Soc. 125, 583–609 (1999).

  • 27.

    Arnold, N. P., Kuang, Z. & Tziperman, E. Enhanced MJO-like variability at high SST. J. Clim. 26, 988–1001 (2013).

  • 28.

    Zhang, C. & Ling, J. Barrier effect of the Indo-Pacific Maritime Continent on the MJO: perspectives from tracking MJO precipitation. J. Clim. 30, 3439–3459 (2017).

  • 29.

    Foltz, G. R. & McPhaden, M. J. The 30–70 day oscillations in the tropical Atlantic. Geophys. Res. Lett. 31, L15205 (2004).

  • 30.

    Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Weath. Rev. 132, 1917–1932 (2004).

  • 31.

    Yoo, C., Feldstein, S. & Lee, S. The impact of the Madden–Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett. 38, L24804 (2011).

  • 32.

    Song, E. J. & Seo, K. H. Past-and present-day Madden–Julian Oscillation in CNRM-CM5. Geophys. Res. Lett. 43, 4042–4048 (2016).

  • 33.

    Roxy, M. Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—and its quantification. Clim. Dyn. 43, 1159–1169 (2014).

  • 34.

    Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M. & Leloup, J. Observed freshening and warming of the western Pacific warm pool. Clim. Dyn. 33, 565–589 (2009).

  • 35.

    Dong, L. & McPhaden, M. J. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environ. Res. Lett. 12, 034011 (2017).

  • 36.

    Suematsu, T. & Miura, H. Zonal SST difference as a potential environmental factor supporting the longevity of the Madden–Julian Oscillation. J. Clim. 31, 7549–7564 (2018).

  • 37.

    Sobel, A., Wang, S. & Kim, D. Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci. 71, 4276–4291 (2014).

  • 38.

    Kim, D., Kug, J.-S. & Sobel, A. H. Propagating versus nonpropagating Madden–Julian Oscillation events. J. Clim. 27, 111–125 (2014).

  • 39.

    Gonzalez, A. O. & Jiang, X. Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden–Julian oscillation. Geophys. Res. Lett. 44, 2588–2596 (2017).

  • 40.

    Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).

  • 41.

    Hermes, J. C. et al. A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Front. Mar. Sci. 6, 355 (2019).

  • 42.

    Subramanian, A. et al. Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Front. Mar. Sci. 6, 427 (2019).

  • 43.

    Vitart, F. & Robertson, A. W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci. 1, 3 (2018).

  • 44.

    Straub, K. H. MJO initiation in the real-time multivariate MJO index. J. Clim. 26, 1130–1151 (2013).

  • 45.

    Liu, P. et al. A revised real-time multivariate MJO index. Mon. Weath. Rev. 144, 627–642 (2016).

  • 46.

    Wolding, B. O. & Maloney, E. D. Objective diagnostics and the Madden–Julian oscillation. Part II: application to moist static energy and moisture budgets. J. Clim. 28, 7786–7808 (2015).

  • 47.

    Ventrice, M. J. et al. A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Weath. Rev. 141, 4197–4210 (2013).

  • 48.

    Hendon, H. H., Wheeler, M. C. & Zhang, C. Seasonal dependence of the MJO–ENSO relationship. J. Clim. 20, 531–543 (2007).

  • 49.

    Schreck, C., Lee, H.-T. & Knapp, K. HIRS outgoing longwave radiation—daily climate data record: application toward identifying tropical subseasonal variability. Remote Sens. 10, 1325 (2018).

  • 50.

    Kikuchi, K., Wang, B. & Kajikawa, Y. Bimodal representation of the tropical intraseasonal oscillation. Clim. Dyn. 38, 1989–2000 (2012).

  • 51.

    Seo, K.-H. & Kumar, A. The onset and life span of the Madden–Julian oscillation. Theor. Appl. Climatol. 94, 13–24 (2008).

  • 52.

    Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56, 374–399 (1999).

  • 53.

    Roundy, P. E., Schreck, C. J. III & Janiga, M. A. Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Weath. Rev. 137, 469–478 (2009).

  • 54.

    Zeileis, A., Kleiber, C., Krämer, W. & Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44, 109–123 (2003).

  • 55.

    Bai, J. & Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econ. 18, 1–22 (2003).

  • 56.

    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

  • 57.

    Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Wat. Resour. Res. 18, 107–121 (1982).

  • 58.

    Cohen, P., West, S. G. & Aiken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Psychology Press, 2014).

  • 59.

    Kendall, M. G. Rank Correlation Methods 2 edn (C. Griffin, 1948).

  • 60.

    Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

  • Previous Post

    Insider Selling: Bancorp Inc (NASDAQ:TBBK) EVP Sells 2,539 Shares of Stock

    Next Post

    Equal Entertainment’s Celebrity Page Reaches 100th #SeeHer Spotlight Segment

    Next Post
    Equal Entertainment’s Celebrity Page Reaches 100th #SeeHer Spotlight Segment

    Equal Entertainment’s Celebrity Page Reaches 100th #SeeHer Spotlight Segment

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Research Snappy

    Category

    • Advertising Research
    • Consumer Research
    • Healthcare Research
    • Investment Research

    Google says PAC won’t fund Congress members against election results

    Insulated Cable and Wire Market 2020 Current Status, In-depth Analysis To 2025

    Estimating the Impact of COVID-19 on Urology: Data from a Large Nationwide Cohort

    • Privacy Policy
    • Terms of Use
    • Antispam
    • DMCA
    • Contact Us

    © 2020 researchsnappy.com

    No Result
    View All Result
    • Market Research Forum
    • Investment Research
    • Consumer Research
    • More
      • Advertising Research
      • Healthcare Research
      • Data Analysis
      • Top Companies
      • Latest News

    © 2020 researchsnappy.com