Research Snappy
  • Market Research Forum
  • Investment Research
  • Consumer Research
  • More
    • Advertising Research
    • Healthcare Research
    • Data Analysis
    • Top Companies
    • Latest News
No Result
View All Result
Research Snappy
No Result
View All Result

Global satellite-observed daily vertical migrations of ocean animals

researchsnappy by researchsnappy
November 28, 2019
in Healthcare Research
0
Global satellite-observed daily vertical migrations of ocean animals
402
SHARES
2.4k
VIEWS
Share on FacebookShare on Twitter

  • 1.

    Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).

  • 2.

    Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503, 163–170 (2003).

  • 3.

    Cuvier, G. Le Règne Animal distribué d’après son Organisation pour à l’Histoire Naturelle des Animaux et d’Introduction à l’Anatomie Compare (Deterville, 1829).

  • 4.

    Bianchi, D. & Mislan, K. A. S. Global patterns of diel vertical migration times and velocities from acoustics data. Limnol. Oceanogr. 61, 353–364 (2016).

  • 5.

    Røstad, A., Kaartvedt, S. & Aksnes, D. L. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments. Deep Sea Res. Part I Oceanogr. Res. Pap. 113, 1–6 (2016).

  • 6.

    Steinberg, D. K., Goldthwait, S. A. & Hansell, D. A. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 49, 1445–1461 (2002).

  • 7.

    Bianchi, D., Stock, C., Galbraith, E. D. & Sarmiento, J. L. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27, 478–491 (2013).

  • 8.

    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).

  • 9.

    Churnside, J. H., Wilson, J. J. & Tatarskii, V. V. Lidar profiles of fish schools. Appl. Opt. 36, 6011–6020 (1997).

  • 10.

    Churnside, J. H. & Thorne, R. E. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton. Appl. Opt. 44, 5504–5511 (2005).

  • 11.

    Hostetler, C. A., Behrenfeld, M. J., Hu, Y., Hair, J. W. & Schulien, J. A. Spaceborne lidar in the study of marine systems. Ann. Rev. Mar. Sci. 10, 121–147 (2018).

  • 12.

    Burt, W. J. & Tortell, P. D. Observations of zooplankton diel vertical migration from high-resolution surface ocean optical measurements. Geophys. Res. Lett. 45, 396–13,404 (2018).

  • 13.

    Briggs, N. T., Slade, W. H., Boss, E. & Perry, M. J. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurements. Appl. Opt. 52, 6710–6725 (2013).

  • 14.

    Behrenfeld, M. J. et al. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 40, 4355–4360 (2013).

  • 15.

    Behrenfeld, M. J. et al. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).

  • 16.

    Stramski, D., Shalapyonok, A. & Reynolds, R. A. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance. J. Geophys. Res. Oceans 100, 13295–13307 (1995).

  • 17.

    DuRand, M. D., Green, R. E., Sosik, H. M. & Olson, R. J. Diel variations in optical properties of Micromonas pusilla (Prasinophyceae). J. Phycol. 38, 1132–1142 (2002).

  • 18.

    Dall’Olmo, G. et al. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient. Biogeosciences 8, 3423–3439 (2011).

  • 19.

    Kheireddine, M. & Antoine, D. Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site). J. Geophys. Res. Oceans 119, 5465–5482 (2014).

  • 20.

    Ohman, M. D., Frost, B. W. & Cohen, E. B. Reverse diel vertical migration: an escape from invertebrate predators. Science 220, 1404–1407 (1983).

  • 21.

    Hannides, C. C. S. et al. Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre. Deep Sea Res. Part I Oceanogr. Res. Pap. 56, 73–88 (2009).

  • 22.

    Steinberg, D. K., Lomas, M. W. & Cope, J. S. Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Glob. Biogeochem. Cycles 26, GB1004 (2012).

  • 23.

    Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

  • 24.

    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

  • 25.

    Piontkovski, S. A. & Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009).

  • 26.

    Peterson, W. T. & Schwing, F. B. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30, 1896 (2003).

  • 27.

    Chiba, S., Tadokoro, K., Sugisaki, H. & Saino, T. Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Glob. Change Biol. 12, 907–920 (2006).

  • 28.

    Archibald, K., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33, 181–199 (2019).

  • 29.

    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, GB1006 (2005).

  • 30.

    Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).

  • 31.

    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

  • 32.

    Behrenfeld, M. J. et al. The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): science motive and mission overview. Front. Mar. Sci. 6, 122 (2019).

  • 33.

    Lu, X. et al. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements. Opt. Express 24, 29001–29008 (2016).

  • 34.

    DuRand, M. D. & Olson, R. J. Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating individual-cell to bulk measurements. Limnol. Oceanogr. 43, 1107–1118 (1998).

  • 35.

    Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).

  • 36.

    André, J. M., Navarette, C., Blanchot, J. & Radenac, M. H. Picophytoplankton dynamics in the equatorial Pacific: growth and grazing rates from cytometric counts. J. Geophys. Res. 104, 3369–3380 (1999).

  • 37.

    Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res. Oceans 104, 3297–3310 (1999).

  • 38.

    Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 2601–2617 (2002).

  • 39.

    Jacquet, S., Prieur, L., Avois-Jacquet, C., Lennon, J. F. & Vaulot, D. Short-timescale variability of picophytoplankton abundance and cellular parameters in surface waters of the Alboran Sea (western Mediterranean). J. Plankton Res. 24, 635–651 (2002).

  • 40.

    Gostiaux, L. & van Haren, H. Extracting meaningful information from uncalibrated backscattered echo intensity data. J. Atmos. Ocean. Technol. 27, 943–949 (2010).

  • 41.

    Westberry, T. K., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22, GB2024 (2008).

  • Previous Post

    Stock Traders Purchase High Volume of Diamond Offshore Drilling Put Options (NYSE:DO)

    Next Post

    Stainless Steel Market to Reach 47.2 Million MT by 2021, Says Beroe Inc

    Next Post
    Global Sea Food Market Currently Estimated at $147.04 Billion, Says Beroe Inc

    Stainless Steel Market to Reach 47.2 Million MT by 2021, Says Beroe Inc

    Research Snappy

    Category

    • Advertising Research
    • Consumer Research
    • Data Analysis
    • Healthcare Research
    • Investment Research
    • News

    3 Best Market Research Certifications in High Demand

    PRC needs full funding to do its job | My View

    Plant-based Chicken Market 2021 by Global Key Players, Types, Applications, Countries, Industry Size and Forecast to 2030 – Energy Siren

    • Privacy Policy
    • Terms of Use
    • Antispam
    • DMCA
    • Contact Us

    © 2023 researchsnappy.com

    No Result
    View All Result
    • Market Research Forum
    • Investment Research
    • Consumer Research
    • More
      • Advertising Research
      • Healthcare Research
      • Data Analysis
      • Top Companies
      • Latest News

    © 2023 researchsnappy.com